
Abstract—In the computer game context, it could be a
significant advantage to be able to synthesize sounds given one or
two relatively small examples. Not only do audio files, especially
good quality ones, occupy a significant amount of storage space in
memory or on a CD, but the flexibility of sound creation on
demand and the increased quality and reduced repetition affect
the game play exper ience positively. We will discuss a method for
the synthesis of sound effects, and br iefly summaries a method
for synthesis of sound textures.

Index Terms—sound synthesis, audio, computer games, audio
display, sound effects.

I.INTRODUCTION

WO years ago we created a set of methods for
the synthesis of audio from examples for a

class of sounds we called audio textures. An audio
texture can be described as having a somewhat
random character, but a recognizable quality. Any
small sample of a sound texture should sound very
much like, but not identical to, any other small
sample. We devised three methods for texture
synthesis, but it is the one based on quilting that we
used in this work. The idea behind this method is to
cut pieces from the audio samples and stitch them
together in a new order. Of course, pieces can be
reused, in whole or in part, allowing much bigger
images to be built from smaller samples. There are
various ways to deal with the fact that the seams
between the samples are often audible.

The texture methods do not work at all well on
short sounds of the type we label sound effects:
gunshots, missile launches, impact sounds, and so
on. The reason is that these types of sounds consist
of a beginning, a middle, and an end, while a texture
is really a continuous statistically consistent pattern
that does not start or stop. In order to generate a

sound effect with fidelity a connection must be
established between the temporal relationship found
in the sound and the creation of the textures. What is
the frequency and intensity variation in a a gunshot
sound, or a car crash? How does a breaking glass
change in frequency as a function of time? As a
result of these issues that are temporally based
variables, we began a study of sound effects as
opposed to the textures we had examined until then.

We started by looking at amplitude-time plots of
sounds taken from games, searching specifically for
an envelope that modulates the amplitude for these
sounds. This may be key to their realistic synthesis.
The envelope is a function that characterizes the
volume changes in a sound sample. We decided to
create an envelope by creating an amalgam of many
effects in the same class (I.E. gunshots) from input
files. They are summed into a buffer and broken
into 11 regions. Then line segments are drawn
between the enclosing points, generating a function
that looks something like the curve seen in the
figure; this particular envelope was created from a
set of missile-launch inputs. This scheme worked
only fairly well, as can be heard using the samples
on our web page (http://pages.cpsc.ucalgary.ca/
~behmb/audio/). Following this, two post
processing steps were used: smoothing with a 5
sample wide median filter, followed by volume
(intensity) normalization.

II.SOUND TEXTURES: TILING AND STITCHING

Audio synthesis can be done in a few different
ways, and we have experimented with three
schemes [4] based on what we call particle audio.
The basic idea is to chop up a digitized audio signal

T

Synthesis of Sound Effects for Computer Games
J. R. Parker and Brad Behm

University of Calgary
Digital Media Laboratory

jparker@ucalgary.ca

into small sequences, each the same duration
between 0.001 and 0.1 seconds each. These are
called particles, and have a superficial resemblance
to pixels in computer graphics. However, where a
pixel is really an average color or intensity over a
small spatial region, an audio particle is a collection
of samples, each of which is a temporal average or
maximum, where their order is unchanged from the
original sound sample. There are as many as 3000
samples in a particle, and relationships between
particles are as important as relationships of
samples within particles.

This idea has a resemblance to the idea of
granular synthesis found in modern music
composition [6,7]. In granular synthesis, a particle
is called a granule, and is usually specified as a
function having a frequency or set of frequencies,
and envelopes, and other synthesizer type specifiers.
Notwithstanding this, Xenakis used to slice
magnetic tape into small bits and glue them together
in a different order to create a composition, an act
not unlike what we will soon propose. Figure 1
shows a general picture of a granule, as proposed by
these pioneers.

Gabor [3] of Gabor transform fame had the idea
that sound was actually perceived as a series of
short bursts of energy about 10-21 milliseconds
long. This later proved to be true, and is partly what
allows digital reproduction of sound on computers,
the Internet, and on CDs and DVDs.

A.Lessons from Computer Graphics - Textures

There has been some relatively recent work on the
synthesis of graphical textures from pre-existing

examples. The idea is simple enough: given an
existing visual texture pattern such as foliage, brick,
grass, and others, extend the pattern to fill in a larger
area. This may be needed if an image is placed into
a larger frame and the boundaries need to be
extended, or if a small pan is wanted to give the
illusion of motion and there is no more image to pan
over.

A straightforward and easy to understand method
for constructing new visual textures from smaller
ones is to cut pieces from the samples and paste
them together in a new order. Of course, the original
image can be cut apart in many different ways and
pieces can be reused multiple times, allowing much
bigger images to be built from smaller samples.
There are many ways to deal with the fact that the
seams between the samples are often visible. This
process is referred to as image quilting by Efros [2].
He describes a method that uses square sample
blocks of a fixed size, having an overlap between
neighboring blocks in all directions. Instead of
selecting random blocks to be adjacent in the new
image, it is profitable to select blocks that have
some significant measure of agreement between
them in the overlap region. Smoothing the edges
reduces the visibility of the joins between the blocks
but does not eliminate it.

B.Audio Texture Synthesis

The MIT Media Laboratory [5] has developed one
of the very few methods for the synthesis of audio
textures. They describe a two-level representation
of sound, where the low level consists of what they
call atomic elements, and the high level is a
description of the distribution of those
elements.Their implementation used a binary tree
structured filter to extract the atoms, and at the high
level the probability of each atom is estimated based
on the previous ones and a statistical model is
constructed. They used this scheme to generate
some simple sounds: two sine waves, photocopier
noise, and applause, but not without difficulties:
clicks and pops appear when not expected, and
some periodicity and flavor (similarity) was lost.

Figure 1 – The envelope enclosing a sound, showing the at-

tack, sustain, and release phases.

C.The New Algorithm

As a first step towards the generation of a new
audio texture, rearranging and concatenating small
samples of a source texture sound was tried, in a
way that recalls the image quilting method for
visual textures. The simplest way to do this is to
repeatedly copy chunks of data from random points
within the source into a new audio texture. It is
important to see that by using the original sound cut
into parts, we keep the essential sound quality of the
original texture while introducing variety by
altering the order of the pieces (particles). When we
do this naively, clearly audible defects are heard in
the transitions between random chunks. Obviously,
a method of smoothing these transitions is
necessary. We use a cross-fade (Alpha blending)
algorithm that blends the tail of the preceding chunk
into the head of the new chunk. The length of the
blended portion is variable, but we found that 15%
of the chunk size gives subjectively good results.
The cross-fade between samples helps minimize the
distortion in the transition between random audio
chunks, but does not eliminate it. Portions of the

overlap are audible for a significant part of the
transition, and when collected into 10-20 transitions
per second they result in clicking and buzzing
sounds. Figure 2 illustrates the clipping, joining,
and fading scheme described up to now.

Since an audio texture is, by definition, slightly
repetitive, it is not necessary to rely on randomly
choosing the next chunk in the texture. There should
always be some number of chunks that could
logically follow the previous chunk. That is, given
one chunk or section of a sound, the next section in
sequence would be the obvious choice for a next
particle, but that would cause a repetition that might
be recognizable. The fact that there is an obvious,
preferential sequence is because the tail of the
particle we just inserted has a high degree of
similarity to the first part of the next one, and so on.
The original sequence in may well be the best in this
sense, but there are many others that are almost as
good. Taking advantage of this eliminates distortion
along transitions and enforces the similarity
between the source and final texture.

We use a least-squares similarity measure to find

Original sound file
(input)

Sound broken up into
uniform sized blocks

Select a block to be first.
Place it in the
sound file
being
built.

Find a block that has a start part that
matches the end part of the previously
selected block.

Start End

Place it next, overlapping
start and end portions.

Alpha blend (linear) across
the overlap area.

Figure 2 - The basic process for synthesis of
audio textures from an example. The pro-
cess here is repeated until the desired sound
duration has been synthesized.

Previous

Next

Blocks overlap
when placed
into the created
sound file.

the regions in the source sample that are similar to
the tail (that is, the last 15%) of the preceding
chunk.

Since the chunks originate from the source
sample, there is going to be one near perfect match,
exactly where the tail occurs in the source.
Allowing the copy to continue from this point
results in the original sample simply being copied
repetitively into the final texture, effectively tiling
the source. This is undesired in a texture, so we
forbid this behavior, and mark used sections as
unusable for the immediate future.

This method of choosing chunks provides nearly
seamless transitions, but also creates some obvious
tiling or repetition in the long term, which we think
of to be a defect in a sound texture. It is common for
this algorithm to get stuck in a loop, in which it
returns to a specific spot after a fixed number of
chunks. A method is needed to encourage the
chunk-selection algorithm to make use of the entire
source sample, and not get stuck using the same
regions over and over. This is done using an
accumulator vector of the same size as the source
sample.

At initialization, this accumulator is set to zero.
When samples are copied out of the source, the
corresponding bins in the accumulator are
incremented by 5. After each iteration of the copy
phase, all non-zero elements in the accumulator are
decremented by one. When searching for the best
match using the least-squares similarity measure, as
above, only spaces whose accumulator 'rank' is zero
are searched. If there are not enough consecutive
zero-ranked elements to form the head of the new
chunk, then the accumulator is decremented and the
search is run again. This is very similar to the least
recently used (LRU) algorithm used in virtual
memory page replacement.

This technique forces the search algorithm to use
all of the available material in the source audio file.
This sometimes results in less-than ideal matches,
but we have found the resulting transitions to be
unnoticeable. It is important to note that when
searching for a suitable chunk, only the rank of the
lead-in segment (first 15%) is used. For this reason

it is still possible for frequently used segments to be
used several times, but their increasing rank will
eventually cause the algorithm to look elsewhere. It
is this behavior that prevents segments from
becoming available in the same order that they were
used, and thus reduces tiling and repetition.

The size of the chunks used in all of the above
methods determines to a great extent the quality of
the texture. The optimal chunk size depends on the
specific source sample used. Less 'busy' samples,
with a lower incidence of audible features, need
longer chunks to avoid choppiness in the final
result. Busier samples require smaller chunks to
avoid audible tiling. By hand tailoring this size to a
specific source sample, very good results can be
obtained, but at the expense of generality.

One way to automatically determine the size of
the chunks is using amplitude peaks. The entire
source sample is analyzed for RMS amplitude, and
peaks in amplitude more than 1.5 standard
deviations from the baseline are recorded. The mean
and standard deviation of the observed distance
between these peaks is used to generate the size of
each chunk. Hopefully, then, each chunk will
contain one 'feature' that a listener can recognize.
This method works reasonably well on most
textures, but is still somewhat experimental. In the
future, we plan to experiment with several
frequency-based search strategies to determine the
optimal chunk size. It is possible, however, that
there is no method that will correctly determine
optimal chunk size for all inputs.

III.SOUND EFFECTS

A sound effect is not a sound texture, for many
reasons. The main reason is that an effect usually
has a start, middle, and end part, very much related
to the attack, sustain, release portions of a granule.
A texture, one the other hand, has much the same
statistical properties anywhere on the temporal axis.
The process for creating a sound effect from s set of
examples is the same as that for creating a sound
texture, with two main additions: the creation of an
envelope, and the use of local sampling.

A.Creating an Envelope

Given that there may be multiple input samples,
the problem of creating an envelope to be used in
synthesis is more or less complex depending on the
samples themselves. It would be unusual to find that
all of the samples would have the same duration, so
the first step is to stretch or compress them so that
they do. This is essentially a resampling step. The
magnitudes are rescaled at the same time so that all
of the samples have the same basic properties. A
new, single data image is created that is the average
(mean) of all of the normalized sound samples. This
is the amalgam image.

The envelope is the boundary of the signal region
in the resulting amalgam image, as shown in Figure
3. This amalgam is then broken into 11 regions and
the root-mean-square (RMS) amplitude of the
region is calculated. Then line segments are drawn
between the enclosing points, generating a function
which looks something like the curve seen in Figure
3b - this particular envelope was created from a set
of missile-launch sound effect inputs. Graphing the
individual inputs confirms that the envelopes are
reasonable approximations of the amalgamation of
the inputs.

The envelope created in this manner is used to
define constraints on the generated audio. The idea
is to use the envelope as a region to fill, and to avoid
exceeding the boundary. Low magnitude regions

will be stretch to fill the envelope if they are too far
from it.

B.Use of Locality

Locality in the current context is a reference to
operating systems, virtual memory in particular. If a
page in a virtual memory system is accessed at time
T, it is more likely to be accessed again by time
T+D than in an identical time interval in the more
distant future.

In the creation of synthetic sound effects, a
standard tiling and stitching method as described in
section II was used, but when searching for the next
sample to use, the search was restricted to an area
(time interval) near the current position in the output
stream. We decided to restrict the size of the
window to 15% of the size of the input. One variant
of this algorithm uses the absolute position in the
output stream to identify where to search the inputs
for matches. For example, suppose we have just
finished pasting M samples into the output stream,
making it a total of N samples long. We will search
for matches in each input within +/- 7.5% of the
index N. If an input sample has a total length less
than N samples, it will not be considered in the
synthesis of the selected sound.

A second variant, called relative positioning, uses
a progress ratio. If the output stream is supposed to
be Lout samples long, and we have written out N,

Figure 3. (a) Above, a sound effect to be synthe-
sized. We need to find the envelope. (b) Right, the
envelope found by using a linear boundary of 11
line segments.

we will search the region within +/- 7.5% of (Lout/
N)*Lin.

Relative positioning seems to be consistent, and
doesn't have the noticeable artifacts of the absolute
method, but it is also a less dramatic improvement
over the non-location-sensitive method. Examples
are also available on the web page.

C.Constricting Minimum Window Size

For certain data sets, noticeably the engine
sounds, there is a surfeit of extra high-frequency
noise. This is caused by small artifacts at the places
where the blocks meet adding to create a sound
having a frequency related to the number of blocks
per second. In an attempt to reduce this, the
minimum size of the paste window was constrained
to be 100 samples. Of course, ideally this should be
sample-rate independent.

IV.CONCLUSIONS

The method described here can create synthetic
sound effects from single or multiple input samples.
If the samples represent the same sound, and have
an observed similarity in timbre, pitch, and temporal
properties, then the resulting synthetic sounds have
been judged by a small group of listeners to be very
similar to the originals. The method was designed
for use with computer games, and the synthesis can
be performed in real time as needed.

You may judge the quality by visiting the web
page at http://pages.cpsc.ucalgary.ca/~parker/audio/
. This page is organize temporally, so the best
results are at the bottom of the page.

ACKNOWLEDGMENTS

The authors thank Sonny Chan for help with the
first versions of the software.

REFERENCES

[1] Z. Bar-Joseph, D. Lischinski, and M. Werman,
Granular Synthesis of Sound Textures Using
Statistical Learning, Proceedings ICMC, 1999.

[2] A. Efros and W.T. Freeman, Image Quilting for
Texture Synthesis and Transfer, Proc. SIGGRAPH
2001, Los Angeles, Aug. 12-17, 2001

[3] Gabor, D. Acoustical quanta and the theory of
hearing. Nature, 159(4044), 591-594, 1947.

[4] Parker, S. Chan, Sound Synthesis for the Web,
Games and Virtual Reality, SIGGRAPH 2003, San
Diego, CA. July 28-30, 2003.

[5] N. N. Saint-Arnaud and K. Popat, Analysis and
Synthesis of Sound Textures, Proc. IJCAI-95
Workshop on Computational Auditory Scene
Analysis, Montreal, August 1995, Pp. 125-131.

[6] Truax, B., Real-time granular synthesis with a
digital signal processor. Computer Music Journal,
12(2), 14-26, 1988

[7] Xenakis, Iannis, Formalized Music. Bloomington:
Indiana University Press. 1971

J.R. Parker (B.Sc. Applied Mathematics, Calgary 1977;
MSc. Computer Science, Calgary, 1980; Ph.D.
Informatics, Gent, 1998) has been a member of the IEEE
irregularly since 1988.

He is the author of three books, including the very
popular Algorithms for Image Processing and Computer
Vision.(1997) and Start Your Engines: Developing
Racing and Driving Games (2005). He is a professor of
Computer Science at the University of Calgary, where he
specializes in machine perception, computer games, and
artificial intelligence.

Dr. Parker is also a member of the Association for
Computing Machinery, and the International Game
Developers Association.

